Financial Services Client

On-demand pricing trade calculation

Problem

The client had an internal, sales facing website which allowed users to define a set of pricing
requests and get back a set of risk and scenario numbers for them. These requests could be
expressed in absolute terms, e.g. a strike of 0.76 or using domain specific values such as a
25d put.

They wanted to be able to see the impact of proposed changes to both market configuration’
and the software which was used as well as get validation during the Cl process that, where
none were expected, there were no differences?. The underlying software stack had unit
tests for known use-cases, but these were created for® specific use-cases* rather than being
guaranteed to be the cases which were being used in production at the time.

The team consumed libraries from multiple other internal teams. For some of these other
teams, their primary client was the pricing system and as such, these teams wished to be
able to get prior warning of the impact of their proposed changes before formally crystallising
their releases.

Note that it was possible to run a self-contained stack locally.

' E.g. changing the way a yield curve was constructed

2 This dual purpose is very common within our customers’ requirements

3 And subsequently updated when differences were found

4 Which were known at the time of code creation. This frequently led to there being unit tests using
configurations which were no longer in actual use by the end system and no unit tests covering
configurations which were actually being used.

Solution

The solution here was a multi stage process:

1. Define the range of inputs which should be tested for, e.g. strikes - {1.2, 1.4, 1.6, 25d,
atmf, spot}, ccypair - {GBPUSDY}, stype - {put,call} etc. This was done in conjunction
with the quants®, the system designers and the end users.

2. On aregular basis, expand the set of inputs to the set of actual pricing requests
based off of the market for the reference date, price accordingly and then store for
subsequent use

3. When tests are run, read in the test material generated from the previous step,
execute against the candidate web service and compare the results

Note that the test material was stored in the same source control repository as the code for
the project. This was to ensure that the code and expected numbers could be updated in a
single atomic unit.

A console app was written so that the tests could be run both as part of the Cl process and
locally. When running in local mode, it published its results to Conical so that developers etc
could easily understand where the changes were and then share with the appropriate
colleagues for approval prior to code being checked in.

The CI process was updated to run the generated test material in a strict pass-fail mode.
This meant that a user had to run the tests locally / on a branch and update the set of
expected results (see later for details on how that was achieved painlessly) in order for their
commit to be successful.

Each step is defined in more detail below.

5 The team responsible for performing the actual analytics

Input definition

In order to reduce the need to enter in large combinations of trades, a simple template
format was defined along the lines of 1 or more of the following block types per test®:

Single value options are treated as fixed
TradeType: FXOption

CurrencyPair: GBPUSD

Type: Put,Call,Straddle

Strike: 1.1, 1.2,1.3,1.4,spot,atmf

Expiry: 1w,1m,3m,6m,1y

In the above instance, 90 (3 x 6 x 5) pricing trades would be generated’.

These would then be grouped into logical units, so that the ‘FX / Flow / Europe / 2022-05-02’
test would contain a large number of different currency pairs etc?.

® The actual format allowed for more complex and allowed for the ability to select n of the various
input options to prevent the combinatorial explosion of very similar tests being generated.

" See #3, the actual format would allow for ‘select 3 of the following options’, e.g.
Strike,3,1.1,1.2,1.3,1.4,spot,atmf etc.

& The actual choice of this categorisation was a matter of some debate between the various teams
and they settled on what suited them best.

Test generation and storage

A weekly Cl job was set up to generate test material for a new reference date using the
previously defined templates. This Cl job would create new material for the reference date
and mark older material for removal so that the total volume of test material was kept
manageable. This Cl job could also be manually triggered if additional material needed to
be created off-schedule®. This would generate a change request which could either be
automatically committed™ or could be emailed to the development team for approval.

This material was generated using a custom console app to take the above templates,
expand them out and send them through to the pricing service and then subsequently store
both the expanded out inputs and the expected results.

This whole process made it very easy to ensure that the test material being used to validate
the system was up to date and that adding additional test definitions was as simple as
modifying the test templates and then they would automatically flow through.

The choice was made to store the data in source control so that code changes and the
associated impact of those changes could be processed in a single atomic unit of work.

® Typically when a new feature had been added to the pricer and people were keen to have the
material ASAP.

' When operating in this mode, prior to the commit being performed, the generated material was run
again so that the build wasn’t going to be left in a broken state over the weekend if something went
wrong.

Test running

These tests were run by a custom executable which imported the inputs and then called out
to the pricing service. These results were then compared against the set of expected results
using the BorsukSoftware.ObjectFlattener and BorsukSoftware.ObjectComparison libraries.
Where the numbers matched, no payload was necessary and the test was marked as a
success. Where there were differences, a difference payload' was generated and the set of
expected results were stored along with a mapping file'.

Once all of the tests had been run, then an additional file containing the details of all of the

tests whose expected results should be updated if the updated code / configuration should

be accepted was generated and stored. This file could subsequently be used by automated
tools to update all the TMR™ without needing to manually update the result files for multiple
tests.

These tests could be run locally by developers with the results stored locally on disc or they
could also be published to Conical when they were being run as part of the CI process or
release confirmation. Conical mode allowed for users to be able to share the impact of
proposed changes with their user-base / library contributors for easier confirmation and
therefore quicker release cycles.

Note that this ability to run locally was also available to developers in supplier teams™
assuming that there were no binary compatibility issues so they even run their tests without
needing to get the pricing systems team involved™.

" A Json document detailing a summary of the number of inputs which matched / didn’t match etc
along with a detailed drill down of what didn’t match for any given input.

2 This file specified what files should be replaced in the TMR with which saved down file in the case
that the new results were accepted. Typically, this file was simply ‘expectedResults.xml =>
additionalFiles\expectedResults.xml’ but was flexible to allow for more complicated test definitions in
the future

3 This worked by reading in the previous files, copying them over and then generating a change
request which could be submitted to source control in the usual way.

" Think ‘quants’ here

'® This ability help to encourage a change in culture from the suppliers as it was possible to run the full
set of tests in a timely fashion so their libraries could be accepted and released to the end clients
much more quickly.

https://www.nuget.org/packages?q=BorsukSoftware.ObjectFlattener
https://www.nuget.org/packages?q=BorsukSoftware.ObjectComparison

Variations

The general approach detailed here has been very common across most of our clients, there
are slight variations based off whether the analytics are being called via a web service or
where there’s no inherent web service, but instead the functionality is exposed through a set
of binaries’®.

Note that almost the entire case study holds true if one’s analysing results for a custom
scenario processor, the only differences would be around:

1. How are scenarios defined (usually using a local template)
2. How to express the payload, by trade and then scenario or by scenario and then
trade’’

A similar process also applies when dealing with multi tiered risk systems™®. By testing each
layer and having confidence that it behaves as expected, testing of subsequent layers
becomes easier. Of course, one can alway start by testing the top level'® and then expanding
downwards as appropriate.

The common portion is always to start with the question ‘what will make the release process
for our customers simpler and more reliable?’ and then to go from there.

16 At this point, typically a 2nd custom app to call the actual binaries in-process is created. This 2nd
app is then called by the 1st, once per actual test to be run. This is so that additional metadata about
the run, e.g. memory consumption, can be generated and stored down with the results

7 Conical allows users to upload multiple files so both payloads could be delivered for subsequent
analysis

'8 One could imagine having a layer which can calculate risk for a single trade under a single market
state, and then having additional layers above which provide portfolio level functionality, scenarios,
2nd order risk functionality etc. etc.

' The one consumed by the end user

